Multigravity and spacetime foam

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2007 J. Phys. A: Math. Theor. 407055
(http://iopscience.iop.org/1751-8121/40/25/S61)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.109
The article was downloaded on 03/06/2010 at 05:17

Please note that terms and conditions apply.

Multigravity and spacetime foam

Remo Garattini

Università degli Studi di Bergamo, Facoltà di Ingegneria, Viale Marconi 5, 24044 Dalmine (Bergamo), Italy
and
INFN, sezione di Milano, Via Celoria 16, Milan, Italy
E-mail: remo.garattini@unibg.it

Received 17 October 2006
Published 6 June 2007
Online at stacks.iop.org/JPhysA/40/7055

Abstract

We consider a multigravity approach to spacetime foam. As an application we give indications on the computation of the cosmological constant, considered as an eigenvalue of a Sturm-Liouville problem. A variational approach with Gaussian trial wavefunctionals is used as a method to study such a problem. We approximate the equation to one loop in a Schwarzschild background and a zeta function regularization is involved to handle with divergences. The regularization is closely related to the subtraction procedure appearing in the computation of the Casimir energy in a curved background. A renormalization procedure is introduced to remove the infinities together with a renormalization group equation.

PACS numbers: 04.60.-m, 98.80.Qc

Despite of its recent interest, the term 'multigravity' is not completely new. Indeed, in the early seventies, some pioneering works appeared under the name 'strong gravity' or ' f - g theory' [1] as a tentative to describe a sector of hadronic physics where a massive spin-2 field (the f-meson with Planck mass $M_{f} \sim 1 \mathrm{GeV}$) plays a dominant role. multigravity coincides with 'strong gravity' or ' f - g theory' when the number of gravitational fields involved is exactly 2 ('bigravity'). In this paper, we would like to use the multigravity idea as a model of space-time foam [2] to compute the cosmological constant. Such a computation has been done looking at the foam as a large N composition of Schwarzschild wormholes [3]. Nevertheless, the multigravity framework seems to be more appropriate for such a computation. We recall that there exists a very large discrepancy between the recent estimates on the cosmological constant, which approximately are of the order of $10^{-47} \mathrm{GeV}^{4}$, while a crude estimate of the zero point energy (ZPE) of some field of mass m with a cutoff at the Planck scale gives $E_{\text {ZPE }} \approx 10^{71} \mathrm{GeV}^{4}$ with a difference of about 118 orders [4]. Let us see how to use multigravity, to approach such a problem. To this purpose we begin with the following action involving N massless gravitons
without matter fields [5]:

$$
\begin{equation*}
S_{0}=\sum_{i=1}^{N} S\left[g_{i}\right]=\sum_{i=1}^{N} \frac{1}{16 \pi G_{i}} \int \mathrm{~d}^{4} x \sqrt{-g_{i}}\left[R\left(g_{i}\right)-\Lambda_{i}\right], \tag{1}
\end{equation*}
$$

where Λ_{i} and G_{i} are the cosmological constant and the related Newton constant corresponding to the i th universe, respectively. Generally speaking, the total action should be of the form

$$
\begin{equation*}
S_{\mathrm{tot}}=\sum_{i=1}^{N} S\left[g_{i}\right]+\lambda S_{\mathrm{int}}\left(g_{1}, g_{2}, \ldots, g_{N}\right) \tag{2}
\end{equation*}
$$

When $\lambda \rightarrow 0$, the N world are non-interacting. This will be the context we are going to examine. In this way, the action S_{0} describes a gas of gravitons. Consider for simplicity the case $N=1$ and the related Einstein field equations

$$
\begin{equation*}
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R^{(4)}+\Lambda_{c} g_{\mu \nu}=G_{\mu \nu}+\Lambda_{c} g_{\mu \nu}=0 \tag{3}
\end{equation*}
$$

where $G_{\mu \nu}$ is the Einstein tensor. If we introduce a time-like unit vector u^{μ} such that $u \cdot u=-1$, then

$$
\begin{equation*}
G_{\mu \nu} u^{\mu} u^{\mu}=\Lambda_{c} . \tag{4}
\end{equation*}
$$

This is simply the Hamiltonian constraint written in terms of equation of motion, which is classical. However, the discrepancy between the observed cosmological constant and the computed one is in its quantum version, that could be estimate by the expectation value $\left\langle\Lambda_{c}\right\rangle$. Since

$$
\begin{equation*}
\frac{\sqrt{g}}{2 \kappa} G_{\mu \nu} u^{\mu} u^{\mu}=\frac{\sqrt{g}}{2 \kappa} R+\frac{2 \kappa}{\sqrt{g}}\left(\frac{\pi^{2}}{2}-\pi^{\mu \nu} \pi_{\mu \nu}\right)=-\mathcal{H} \tag{5}
\end{equation*}
$$

where R is the scalar curvature in three dimensions, we can write

$$
\begin{equation*}
\frac{\left\langle\Lambda_{c}\right\rangle}{\kappa}=-\frac{1}{V}\left\langle\int_{\Sigma} \mathrm{d}^{3} x \mathcal{H}\right\rangle=-\frac{1}{V}\left\langle\int_{\Sigma} \mathrm{d}^{3} x \hat{\Lambda}_{\Sigma}\right\rangle \tag{6}
\end{equation*}
$$

where the last expression stands for

$$
\begin{equation*}
\frac{1}{V} \frac{\int \mathcal{D}\left[g_{i j}\right] \Psi^{*}\left[g_{i j}\right] \int_{\Sigma} \mathrm{d}^{3} x \mathcal{H} \Psi\left[g_{i j}\right]}{\int \mathcal{D}\left[g_{i j}\right] \Psi^{*}\left[g_{i j}\right] \Psi\left[g_{i j}\right]}=\frac{1}{V} \frac{\langle\Psi| \int_{\Sigma} \mathrm{d}^{3} x \hat{\Lambda}_{\Sigma}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}=-\frac{\Lambda}{\kappa} \tag{7}
\end{equation*}
$$

and where we have integrated over the hypersurface Σ, divided by its volume and functionally integrated over quantum fluctuation with the help of some trial wavefunctionals. Note that equation (7) can be derived starting with the Wheeler-DeWitt equation (WDW) [6] which represents invariance under time reparametrization. Equation (7) represents the SturmLiouville problem associated with the cosmological constant. The related boundary conditions are dictated by the choice of the trial wavefunctionals which, in our case are of the Gaussian type. Different types of wavefunctionals correspond to different boundary conditions. Extracting the TT tensor contribution from equation (7) approximated to second order in perturbation of the spatial part of the metric into a background term, $\bar{g}_{i j}$, and a perturbation, $h_{i j}$, we get
$\hat{\Lambda}_{\Sigma}^{\perp}=\frac{1}{4 V} \int_{\Sigma} \mathrm{d}^{3} x \sqrt{\bar{g}} G^{i j k l}\left[(2 \kappa) K^{-1 \perp}(x, x)_{i j k l}+\frac{1}{(2 \kappa)}\left(\triangle_{2}\right)_{j}^{a} K^{\perp}(x, x)_{i a k l}\right]$.
Here $G^{i j k l}$ represents the inverse DeWitt metric and all indices run from one to three. The propagator $K^{\perp}(x, x)_{i a k l}$ can be represented as

$$
\begin{equation*}
K^{\perp}(\vec{x}, \vec{y})_{i a k l}:=\sum_{\tau} \frac{h_{i a}^{(\tau) \perp}(\vec{x}) h_{k l}^{(\tau) \perp}(\vec{y})}{2 \lambda(\tau)} \tag{9}
\end{equation*}
$$

where $h_{i a}^{(\tau) \perp}(\vec{x})$ are the eigenfunctions of Δ_{2}, whose explicit expression for the massive case will be shown in the next section. τ denotes a complete set of indices and $\lambda(\tau)$ are a set of variational parameters to be determined by the minimization of equation (8). The expectation value of $\hat{\Lambda}_{\Sigma}^{\perp}$ is easily obtained by inserting the form of the propagator into equation (8) and minimizing with respect to the variational function $\lambda(\tau)$. Thus the total one-loop energy density for TT tensors becomes

$$
\begin{equation*}
\frac{\Lambda}{8 \pi G}=-\frac{1}{4 V} \sum_{\tau}\left[\sqrt{\omega_{1}^{2}(\tau)}+\sqrt{\omega_{2}^{2}(\tau)}\right] . \tag{10}
\end{equation*}
$$

The above expression makes sense only for $\omega_{i}^{2}(\tau)>0$, where ω_{i} are the eigenvalues of Δ_{2}. If we fix our attention on some particular background, for example the Schwarzschild background, the spin- 2 operator \triangle_{2}, simply becomes

The further step is the evaluation of equation (10). Its contribution to the spin-2 operator for the Schwarzschild metric will be

$$
\begin{equation*}
\left(\Delta_{2} h^{T T}\right)_{i}^{j}:=-\triangle_{S}\left(h^{T T}\right)_{i}^{j}+\frac{6}{r^{2}}\left(1-\frac{2 M G}{r}\right)\left(h^{T T}\right)_{i}^{j}+2\left(R h^{T T}\right)_{i}^{j} \tag{11}
\end{equation*}
$$

Δ_{S} is the scalar curved Laplacian, whose form is

$$
\begin{equation*}
\Delta_{S}=\left(1-\frac{2 M G}{r}\right) \frac{\mathrm{d}^{2}}{\mathrm{~d} r^{2}}+\left(\frac{2 r-3 M G}{r^{2}}\right) \frac{\mathrm{d}}{\mathrm{~d} r}-\frac{L^{2}}{r^{2}} \tag{12}
\end{equation*}
$$

and R_{j}^{a} is the mixed Ricci tensor whose components are

$$
\begin{equation*}
R_{i}^{a}=\left\{-\frac{2 M G}{r^{3}}, \frac{M G}{r^{3}}, \frac{M G}{r^{3}}\right\} \tag{13}
\end{equation*}
$$

This implies that the scalar curvature is traceless. We are therefore led to study the following eigenvalue equation:

$$
\begin{equation*}
\left(\triangle_{2} h^{T T}\right)_{i}^{j}=\omega^{2} h_{j}^{i} \tag{14}
\end{equation*}
$$

where ω^{2} is the eigenvalue of the corresponding equation. In doing so, we follow Regge and Wheeler in analysing the equation as modes of definite frequency, angular momentum and parity [7]. In particular, our choice for the three-dimensional gravitational perturbation is represented by its even-parity form

$$
\begin{equation*}
\left(h^{\mathrm{even}}\right)_{j}^{i}(r, \vartheta, \phi)=\operatorname{diag}[H(r), K(r), L(r)] Y_{l m}(\vartheta, \phi) \tag{15}
\end{equation*}
$$

Defining reduced fields and passing to the proper geodesic distance from the throat of the bridge, system (14) becomes

$$
\left\{\begin{array}{l}
{\left[-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+\frac{l(l+1)}{r^{2}}+m_{1}^{2}(r)\right] f_{1}(x)=\omega_{1, l}^{2} f_{1}(x)} \tag{16}\\
{\left[-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+\frac{l(l+1)}{r^{2}}+m_{2}^{2}(r)\right] f_{2}(x)=\omega_{2, l}^{2} f_{2}(x)}
\end{array}\right.
$$

where we have defined $r \equiv r(x)$ and

$$
\left\{\begin{array}{l}
m_{1}^{2}(r)=U_{1}(r)=m_{1}^{2}(r, M)-m_{2}^{2}(r, M) \tag{17}\\
m_{2}^{2}(r)=U_{2}(r)=m_{1}^{2}(r, M)+m_{2}^{2}(r, M) .
\end{array}\right.
$$

$m_{1}^{2}(r, M) \rightarrow 0$ when $r \rightarrow \infty$ or $r \rightarrow 2 M G$ and $m_{2}^{2}(r, M)=3 M G / r^{3}$. Note that, while $m_{2}^{2}(r)$ is constant in sign, $m_{1}^{2}(r)$ is not. Indeed, for the critical value $\bar{r}=5 M G / 2, m_{1}^{2}(\bar{r})=m_{g}^{2}$ and in the range $(2 M G, 5 M G / 2)$ for some values of $m_{g}^{2}, m_{1}^{2}(\bar{r})$ can be negative. It is interesting
therefore concentrate in this range, where $m_{1}^{2}(r, M)$ vanishes when compared with $m_{2}^{2}(r, M)$. So, in a first approximation we can write

$$
\left\{\begin{array}{l}
m_{1}^{2}(r) \simeq-m_{2}^{2}\left(r_{0}, M\right) \tag{18}\\
m_{2}^{2}(r) \simeq+m_{2}^{2}\left(r_{0}, M\right)
\end{array}\right.
$$

where we have defined a parameter $r_{0}>2 M G$ and $m_{0}^{2}\left(r_{0}, M\right)=3 M G / r_{0}^{3}$. The main reason for introducing a new parameter resides in the fluctuation of the horizon that forbids any kind of approach. It is now possible to explicitly evaluate equation (10) in terms of the effective mass. By adopting the WKB method used by 't Hooft in the brick wall problem [8], we arrive at the following relevant expression:

$$
\begin{equation*}
\rho_{i}(\varepsilon)=\frac{m_{i}^{4}(r)}{256 \pi^{2}}\left[\frac{1}{\varepsilon}+\ln \left(\frac{\mu^{2}}{m_{i}^{2}(r)}\right)+2 \ln 2-\frac{1}{2}\right] \tag{19}
\end{equation*}
$$

$i=1,2$, where we have used the zeta function regularization method to compute the energy densities ρ_{i} and where we have introduced the additional mass parameter μ in order to restore the correct dimension for the regularized quantities. Such an arbitrary mass scale emerges unavoidably in any regularization scheme. The energy density is renormalized via the absorption of the divergent part (in the limit $\varepsilon \rightarrow 0$) into the redefinition of the bare classical constant Λ :

$$
\begin{equation*}
\Lambda \rightarrow \Lambda_{0}+\Lambda^{\mathrm{div}}=\Lambda_{0}+\frac{G}{32 \pi \varepsilon}\left(m_{1}^{4}(r)+m_{2}^{4}(r)\right) \tag{20}
\end{equation*}
$$

To remove the dependence on the arbitrary mass scale μ, it is appropriate to use the renormalization group equation. Therefore we impose that [9]

$$
\begin{equation*}
\frac{1}{8 \pi G} \mu \frac{\partial \Lambda_{0}^{T T}(\mu)}{\partial \mu}=\mu \frac{\mathrm{d}}{\mathrm{~d} \mu} \rho_{e f f}^{T T}(\mu, r), \tag{21}
\end{equation*}
$$

where $\rho_{\text {eff }}^{T T}(\mu, r)$ is the renormalized energy density. Solving it we find that the renormalized constant Λ_{0} should be treated as a running one in the sense that it varies provided that the scale μ is changing

$$
\begin{equation*}
\Lambda_{0}(\mu, r)=\Lambda_{0}\left(\mu_{0}, r\right)+\frac{G}{16 \pi}\left(m_{1}^{4}(r)+m_{2}^{4}(r)\right) \ln \frac{\mu}{\mu_{0}} . \tag{22}
\end{equation*}
$$

The final form for the cosmological constant is [10]

$$
\begin{equation*}
\frac{\Lambda_{0}\left(\mu_{0}, r_{0}\right)}{8 \pi G}=-\frac{m_{0}^{4}\left(r_{0}, M\right)}{128 \pi^{2}} \ln \left(\frac{m_{0}^{2}\left(r_{0}, M\right) \sqrt{e}}{4}\right) \tag{23}
\end{equation*}
$$

which has a minimum for

$$
\begin{equation*}
\frac{m_{0}^{2}\left(r_{0}, M\right) \sqrt{e}}{4 \mu_{0}^{2}}=\frac{1}{\sqrt{e}} \tag{24}
\end{equation*}
$$

with

$$
\begin{equation*}
\frac{\Lambda_{0}\left(\mu_{0}, r\right)}{8 \pi G}=-\frac{\mu_{0}^{4}}{16 e^{2} \pi^{2}} \tag{25}
\end{equation*}
$$

We can now discuss the multigravity gas. For each gravitational field introduce the following variables $\left(N, N_{i}\right)^{k)}$ and choose the gauge $N_{i}^{(k)}=0,\left(k=1 \ldots N_{w}\right)$. Define the following domain $D_{\Lambda}^{(k)}$:

$$
\begin{equation*}
\left\{\Psi \left\lvert\,\left[\left[(2 \kappa) G_{i j k l} \pi^{i j} \pi^{k l}-\frac{\sqrt{g}}{2 \kappa} R\right]^{(k)} \Psi^{(k)}\left[g_{i j}^{(k)}\right]=-\frac{\sqrt{g^{(k)}}}{\kappa^{(k)}} \Lambda_{c}^{(k)} \Psi^{(k)}\left[g_{i j}^{(k)}\right]\right]\right.\right\}, \tag{26}
\end{equation*}
$$

Figure 1. The space Σ composed by the non-overlapping spaces Σ_{k}.
and assume the following assumption: \exists a covering of Σ such that

$$
\begin{equation*}
\Sigma=\bigcup_{k=1}^{N_{w}} \Sigma_{k} \quad \Sigma_{k} \cap \Sigma_{j}=\emptyset \tag{27}
\end{equation*}
$$

for $k \neq j$. Then equation (7) turns into

$$
\begin{equation*}
\frac{1}{V_{(k)}} \frac{\int \mathcal{D}\left[g_{i j}^{(k)}\right] \Psi_{(k)}^{*}\left[g_{i j}^{(k)}\right] \int_{\Sigma_{k}} \mathrm{~d}^{3} x \hat{\Lambda}_{\Sigma_{k}}^{(k)} \Psi_{(k)}\left[g_{i j}^{(k)}\right]}{\int \mathcal{D}\left[g_{i j}^{(k)}\right] \Psi_{(k)}^{*}\left[g_{i j}^{(k)}\right] \Psi_{(k)}\left[g_{i j}^{(k)}\right]}=-\frac{\Lambda_{(k)}}{8 \pi G_{(k)}} \tag{28}
\end{equation*}
$$

Each Σ_{k} has topology $S^{2} \times R^{1}$. Therefore, the whole physical space Σ containing the energy density appears depicted as in the following picture: A further simplification comes from the assumption that the different Newton's constants are all equal. This leads to a model which is composed by N_{w} copies of the same world [10] and on each copy the procedure contained between equations (10) and (23) has to be repeated. Thus, the final evaluation of the 'global' cosmological constant can be written as

$$
\begin{equation*}
\max \left\{\frac{1}{V_{1}} \int_{\Sigma_{1}} \mathrm{~d}^{3} x \Lambda_{\Sigma_{1}}^{(1)}\right\}+\cdots+\max \left\{\frac{1}{V_{N_{w}}} \int_{\Sigma_{N_{w}}} \mathrm{~d}^{3} x \Lambda_{\Sigma_{N_{w}}}^{\left(N_{w}\right)}\right\}=-\frac{\Lambda}{8 \pi G}, \tag{29}
\end{equation*}
$$

where $\Lambda_{\Sigma_{k}}^{(k)}$ is the eigenvalue obtained evaluating equation (28) on each Σ_{k}. The computation of the max is taken on each disjoint Σ_{k}. Note that in any case, the maximum of $\Lambda_{\Sigma_{k}}^{(k)}$ corresponds to the minimum of the energy density computed on the related hypersurface. It is interesting also to note that the whole procedure can be applied even in the case of a massive graviton [11] with a term of the form [12, 13]

$$
\begin{equation*}
S_{m}=\frac{m_{g}^{2}}{8 \kappa} \int \mathrm{~d}^{4} x \sqrt{-\hat{g}}\left[h^{i j} h_{i j}\right] \tag{30}
\end{equation*}
$$

which is a particular sub-case of the Pauli-Fierz term [14].

References

[1] Isham C J, Salam A and Strathdee J 1971 Phys. Rev. D 3867 Salam A and Strathdee J 1977 Phys. Rev. D 162668 Isham C J and Storey D 1978 Phys. Rev. D 181047
[2] Wheeler J A 1957 Ann. Phys. 2604 Wheeler J A 1962 Geometrodynamics (New York: Academic)
[3] Garattini R 2002 Int. J. Mod. Phys. D 4635 (Preprint gr-qc/0003090)
[4] For a pioneering review on this problem see Weinberg S 1989 Rev. Mod. Phys. 611

For more recent and detailed reviews see Sahni V and Starobinsky A 2000 Int. J. Mod. Phys. D 9373 (Preprint astro-ph/9904398)
Straumann N 2002 The history of the cosmological constant problem Preprint gr-qc/0208027
Padmanabhan T 2003 Phys. Rep. 380235 (Preprint hep-th/0212290)
[5] Damour T and Kogan I I 2002 Phys. Rev. D 66104024
[6] DeWitt B S 1967 Phys. Rev. 1601113
[7] Regge T and Wheeler J A 1957 Phys. Rev. 1081063
[8] 't Hooft G 1985 Nucl. Phys. B 256727
[9] Perez-Mercader J and Odintsov S D 1992 Int. J. Mod. Phys. D 1401
Cherednikov I O 2002 Acta Phys. Slovaca 52221
Cherednikov I O 2004 Acta Phys. Polon. B 351607
Bordag M, Mohideen U and Mostepanenko V M 2001 Phys. Rep. 3531
Inclusion of non-perturbative effects, namely beyond one loop, in de Sitter Quantum Gravity have been discussed in Falkenberg S and Odintsov S D 1998 Int. J. Mod. Phys. A 13607 (Preprint hep-th 9612019)
[10] Garattini R 2004 TSPU Vestnik 4472 N 7 (Preprint gr-qc/0409016)
[11] Boulware D G and Deser S 1972 Phys. Rev. D 123368
Dam H van and Veltman M 1970 Nucl. Phys. B 22397
Zakharov V I 1970 JETP Lett. 12312
Goldhaber A S and Nieto M M 1974 Phys. Rev. D 91119
Larson S L and Hiscock W A 2000 Phys. Rev. D 61104008 (Preprint gr-qc/9912102)
Visser M 1997 Mass for the graviton Preprint gr-qc/9705051
Kogan I I, Mouslopoulos S and Papazoglou A 2001 Phys. Lett. B 503173 (Preprint hep-th/0011138)
Porrati M 2001 Phys. Lett. B 49892 (Preprint hep-th/0011152)
Higuchi A 1987 Nucl. Phys. B 282397
Higuchi A 1989 Nucl. Phys. B 325745
Duff M J, Liu J T and Sati H 2001 Phys. Lett. B 516156 (Preprint hep-th/0105008)
Dilkes F A, Duff M J, Liu J T and Sati H 2001 Phys. Rev. Lett. 87041301 (Preprint hep-th/0102093)
[12] Garattini R 2006 J. Phys. Conf. Ser. 33215 (Preprint gr-qc/0510062)
Garattini R 2006 J. Phys. A: Math. Gen. 396393 (Preprint gr-qc/0510061)
[13] Rubakov V A 2004 Lorentz-violating graviton masses: getting around ghosts, low strong coupling scale and VDVZ discontinuity Preprint hep-th/0407104
[14] Fierz M and Pauli W 1939 Proc. R. Soc. A 173211

